86 research outputs found

    Principled Multilayer Network Embedding

    Full text link
    Multilayer network analysis has become a vital tool for understanding different relationships and their interactions in a complex system, where each layer in a multilayer network depicts the topological structure of a group of nodes corresponding to a particular relationship. The interactions among different layers imply how the interplay of different relations on the topology of each layer. For a single-layer network, network embedding methods have been proposed to project the nodes in a network into a continuous vector space with a relatively small number of dimensions, where the space embeds the social representations among nodes. These algorithms have been proved to have a better performance on a variety of regular graph analysis tasks, such as link prediction, or multi-label classification. In this paper, by extending a standard graph mining into multilayer network, we have proposed three methods ("network aggregation," "results aggregation" and "layer co-analysis") to project a multilayer network into a continuous vector space. From the evaluation, we have proved that comparing with regular link prediction methods, "layer co-analysis" achieved the best performance on most of the datasets, while "network aggregation" and "results aggregation" also have better performance than regular link prediction methods

    Introducing scalegraph: an x10 library for billion scale graph analytics

    Get PDF

    Is Self-Supervised Pretraining Good for Extrapolation in Molecular Property Prediction?

    Full text link
    The prediction of material properties plays a crucial role in the development and discovery of materials in diverse applications, such as batteries, semiconductors, catalysts, and pharmaceuticals. Recently, there has been a growing interest in employing data-driven approaches by using machine learning technologies, in combination with conventional theoretical calculations. In material science, the prediction of unobserved values, commonly referred to as extrapolation, is particularly critical for property prediction as it enables researchers to gain insight into materials beyond the limits of available data. However, even with the recent advancements in powerful machine learning models, accurate extrapolation is still widely recognized as a significantly challenging problem. On the other hand, self-supervised pretraining is a machine learning technique where a model is first trained on unlabeled data using relatively simple pretext tasks before being trained on labeled data for target tasks. As self-supervised pretraining can effectively utilize material data without observed property values, it has the potential to improve the model's extrapolation ability. In this paper, we clarify how such self-supervised pretraining can enhance extrapolation performance.We propose an experimental framework for the demonstration and empirically reveal that while models were unable to accurately extrapolate absolute property values, self-supervised pretraining enables them to learn relative tendencies of unobserved property values and improve extrapolation performance
    • …
    corecore